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ABSTRACT

The observed solar oscillation spectrum is influenced by internal perturbations such as flows and

structural asphericities. These features induce splitting of characteristic frequencies and distort the

resonant-mode eigenfunctions. Global axisymmertric flow — differential rotation — is a very prominent

perturbation. Tightly constrained rotation profiles as a function of latitude and radius are products

of established helioseismic pipelines that use observed Dopplergrams to generate frequency-splitting

measurements at high precision. However, the inference of rotation using frequency-splittings do not

consider the effect of mode-coupling. This approximation worsens for high-angular-degree modes, as

they become increasingly proximal in frequency. Since modes with high angular degrees probe the

near-surface layers of the Sun, inversions considering coupled modes could potentially lead to more

accurate estimates of rotation very close to the surface. In order to investigate if this is indeed the case,

we perform inversions for solar differential rotation, considering coupling of modes for angular degrees

160 ≤ ` ≤ 300 in the surface gravity f -branch and first-overtone p modes. In keeping with the character

of mode coupling, we carry out a non-linear inversion using an eigenvalue solver. Differences in inverted

profiles for frequency splitting measurements from MDI and HMI are compared and discussed. We find

that corrections to the near-surface differential rotation profile, when accounting for mode-coupling

effects, are smaller than 0.003 nHz and hence are insignificant. These minuscule corrections are found

to be correlated with the solar cycle. We also present corrections to even-order splitting coefficients,

which could consequently impact inversions for structure and magnetic fields.
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2 Bharati Das and Kashyap et al.

1. INTRODUCTION

Helioseismology has enabled high-precision measurements of solar internal rotation. Turbulence in the convection

zone excites modes of oscillation which propagate through the solar interior and are sensitive to the prevalent structure

and flows. The extent to which these modes of oscillation, called the solar normal modes, are coupled depends on

their proximity in frequency. Rotation breaks spherical symmetry, resulting in prograde modes with higher frequencies

and retrograde modes with lower frequencies than the corresponding eigenfrequencies predicted in static, non-rotating

standard models (such as Model-S as defined by Christensen-Dalsgaard et al. 1996). This is called rotational frequency

splitting.

Degenerate perturbation theory (DPT; Lavely & Ritzwoller 1992) has traditionally been employed for estimating

rotation, where coupling between distinctly different modes is ignored. DPT has been employed for inversions using

helioseismic data from BBSO (Libbrecht 1989; Brown et al. 1989), GONG (e.g., Thompson et al. 1996), MDI (e.g.,

Kosovichev et al. 1997; Schou et al. 1998) and HMI (e.g., Larson & Schou 2018). Differential rotation (DR) is an

extensively studied feature in the Sun. It is beyond the scope of this paper to discuss the many important studies on

DR, and the reader is referred to Howe (2008) for a comprehensive review of all notable contributions. Of particular

importance, from a methodological perspective, is Schou et al. (1998), which compared inversions via seven different

methods and identified various robust properties of differential rotation. These studies culminated in the consensus

that solar internal rotation is zonal with a solidly rotating core, a differentially rotating convection zone with two

radial shear layers, one at the bottom of the convection zone, termed the “tachocline” (Spiegel & Zahn 1992) and one

near the surface, termed the near-surface shear layer (NSSL; Thompson et al. 1996). These radial shear layers have

drawn attention given their potential importance for driving the solar dynamo and their prominent role in maintaining

the global angular momentum budget.

Quasi-degenerate perturbation theory (QDPT; Lavely & Ritzwoller 1992, , henceforth LR92), on the other hand,

accounts for cross-coupling between modes when computing frequency splittings. Although it represents a more

accurate model, very few studies have employed QDPT in inferring DR because of its computational complexity as

compared to DPT. Schad & Roth (2020) formulated measurements in terms of mode-amplitude ratios to infer DR.

Woodard et al. (2013) and Kashyap et al. (2021) fit mode-amplitude spectra using the prescription of Vorontsov

(2011) (hereafter V11) to infer a-coefficients, which are polynomial expansion coefficients of frequency splittings.

Higher-angular-degree modes are closely spaced in frequency, implying the worsening of the underlying assumption of

DPT. Kashyap et al. (2021) showed that the difference in splittings estimated by DPT and QDPT are statistically

significant for larger angular degrees in the f and p1 branches. Here, we attempt to infer the rotation profile through

the application of the more general QDPT formalism, while still using the a-coefficients as our primary measurement.

Given that only high-angular degrees are coupled, we propose a “hybrid” inversion method, where DPT is used for

low-angular-degree modes and QDPT is used for high-angular-degree modes. Low-angular-degree modes are sensitive

to greater depths, while the high angular degrees are trapped very close to the surface. Consequently, we expect only

near-surface corrections from our study.

In this study, we use almost 22-years of a-coefficient measurements to infer DR. The period between May 1996

and April 2010 was constrained by measurements from MDI (Scherrer et al. 1995), onboard SOHO, and the period

between April 2010 and January 2018 was constrained by measurements from HMI (Schou et al. 2012), onboard the

SDO. While the odd a-coefficients are almost completely governed by differential rotation, the even a-coefficients

contain contributions from structure perturbations such as solar oblateness (Woodard 2016), magnetic fields (Antia

et al. 2000; Baldner et al. 2009), sound-speed asphericity (Antia et al. 2001; Baldner & Basu 2008) and second-order

effects of rotation (Gough & Thompson 1990). We carry out forward calculations via an exact eigenvalue solver to

estimate first-order contributions to even a-coefficients due to solar rotation and compare our estimates with V11,

which adopted a semi-analytic approach.

The outline of this paper is as follows. In Section 2, we introduce basic notations for mode coupling in the context

of DR as well as the a-coefficient formalism. Section 3 furnishes details pertaining to (a) categorization of QDPT and

DPT modes in Section 3.1, (b) setting up the cost-function to be minimized during inversion in Section 3.2, and, (c)

determining optimal truncation in the angular degree of perturbation and the spectral window of coupled modes in

Section 3.3. We present the results of corrections for time variation in DR in Section 4.1 and compare even-splitting

coefficients with V11 results in Section 4.2. We summarize the key points in Section 5.
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2. THEORETICAL FORMULATION: ISOLATED AND COUPLED MULTIPLETS

Linear perturbation analysis of the hydrodynamic equations of mass continuity, conservation of momentum, and

energy results in an eigenvalue problem which enables calculation of eigenfrequencies and eigenfunctions of standard

solar models, such as Model-S (Christensen-Dalsgaard et al. 1996). Such standard models do not account for effects

of asphericity, flows, anisotropy, non-adiabaticity, and magnetic fields. In the absence of such perturbations, these

standard models have theoretically predicted “degenerate” eigenfrequencies nω` and eigenfunctions nξ`m. Here n is

the radial order and ` is the spherical harmonic degree. For a given multiplet nS` , the constituent 2` + 1 modes

are labelled by a third quantum number m ∈ [−`, `]. The eigenfrequencies are degenerate in m because of spherical

symmetry.

The influence of the above-mentioned effects needs to be accounted for as additional perturbations to the standard

models. This results in splitting of eigenfrequencies and distortion of the eigenfunctions as follows

nω` → ωref + δnω`m , nξ`m → nξ`m + δnξ`m , (1)

where δnω`m and δnξ`m are the corrections to eigenfrequencies and eigenfunctions and ωref is a reference frequency

which maybe chosen to be close to the unperturbed frequency nω` of the multiplet nS` whose perturbed eigenstate

we are interested in. This results a new eigenvalue problem for the “supermatrix” Z (see Appendix B in Das et al.

(2020)) ∑

k∈K

Zk′k ck = 2ωref δωk′ ck′ . (2)

Elements of Z encode the coupling of modes in the presence of the aforementioned perturbations. Here, k is conveniently

used as a combined index to denote the mode (n, `,m). For a temporal bandwidth ∆ω and spectral bandwidth ∆`,

the supermatrix Z is built around a “central multiplet” n0
S`0 by considering a set of modes K that obey k ∈ K,

|nω`− n0
ω`0 | < ∆ω and |`− `0| < ∆`. A sufficiently large ∆ω and ∆` ensures that all significant couplings with n0

S`0
are accounted for (see Section 3.3). The perturbed eigenfrequencies of the 2`0 + 1 modes estimated from Z thereby

accurately account for cross-coupling of multiplet k0 with its proximal neighbours. The unperturbed mass density is

denoted by ρ0 (Model S). Without loss of generality, we have chosen ωref = ωk0 , for our inversions.

Following the convention in LR92 and V11, we represent the 3D rotational velocity as

vrot(r, θ, φ) = −
∑

s

ws(r) r̂×∇1Ys,0(θ, φ) , (3)

where ws(r) are the respective odd-degree toroidal coefficients and Y`,m(θ, φ) are spherical harmonics labelled by

angular degree ` and azimuthal order m. The elements of the supermatrix due to the rotation field vrot may be

expressed as (see Eqns. [135-136] in LR92 and Eqn. [A1] in V11)

Z
(n0,`0)
k′k,m = 2ωref κ`′κ`

∑

s

γs

(
`′ s `
1 0 −1

)(
`′ s `
m 0 −m

) ∫ R�

r=0

ρ0 ws(r)T
k′k
s (r) r dr +

(
ω2
k − ω2

ref

)
δk′k. (4)

Note that the superscript (n0, `0) denotes the particular central multiplet for which the supermatrix is constructed and

the subscript m is used to explictly imply that only modes with the same azimuthal order are coupled in the presence

of an axisymmetric flow field. We also have κ` = [`(`+ 1)(2`+ 1)]
1/2

, γs =
√

(2s+ 1)/4π and T k
′k

s (r), the sensitivity

kernel for ws(r), given by

T k
′k

s (r) =

[
Uk′Uk − Uk′Vk − Vk′Uk +

`′(`′ + 1) + `(`+ 1)− s(s+ 1)

2
Vk′Vk

]
. (5)

Uk(r) and Vk(r) are the radial and horizontal eigenfunctions corresponding to mode k, respectively. T k
′k

s (r0) therefore

encodes the degree to which the multiplets k and k′ couple in the presence of an axisymmetric, degree-s rotation field

of unit strength at r = r0.

The eigenvalues of acoustic modes in Model-S are degenerate in m, i.e., n0
ω`0m = n0

ω`0 . Differential rotation is an

axisymmetric perturbation that breaks the spherical symmetry of the system, thus lifting the degeneracy in m and

“splitting” the frequencies. As shown in Eqn. (2), the frequency splitting associated with mode k0 may be estimated
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Figure 1. Supermatrix corresponding to the central multiplet 0S200 . The colors are spaced out in logarithmic scale for better
visibility of the weak off-diagonal coupling components. Grids in the matrix denote the submatrices capturing coupling of
multiplets, which can be read off from the top of the column and left of the row. 0S200 − 0S|200±2| couplings are 100 times
weaker, whereas 0S200 − 0S|200±4| couplings are 1000 times weaker than self-coupling. We have used the symlog functionality
of the matplotlib Python package to represent negative values in logarithmic scale.

from eigenvalues of the supermatrix Z
(n0,`0)
kk′,m . The supermatrix for 0S200 due to differential rotation, considering

couplings for 196 ≤ ` ≤ 204, is shown in Fig. 1.

It is standard practice in helioseismology to project frequency splittings δnω`m = nω`m − nω` on to a basis of

orthogonal polynomials P(`)
j (m). The resultant fitting coefficients an`j are the so-called “a-coefficients”:

nω`m = nω` +

jmax∑

j=0

an`j P(`)
j (m). (6)

In practice, a-coefficients are recorded for jmax = 36 (e.g., Schou 1999). A recipe for obtaining these may be found in

Appendix A of Schou et al. (1994). Harnessing the orthonormality of the basis polynomials,
∑`
m=−` P

(`)
j (m)P(`)

k (m) =

δjk, we write the a-coefficients as

an`j =
∑̀

m=−`

δnω`m P(`)
j (m). (7)

The isolated multiplet approximation for a zonal perturbation implies that the frequency splittings δnω`m in Eqn. (7)

are equal to the diagonal elements of Z
(n0,`0)
k0k0,m

scaled by 1/(2 n0ω`0). While this is a good approximation for low angular-

degree multiplets, Kashyap et al. (2021) showed that there is an error (in an L2-norm sense) that is significant enough

to be detectable (about 2σ), when using the isolated-multiplet approximation for high-` multiplets. This error arises

when the off-diagonal components of the supermatrix (as shown in Fig. 1 for the central multiplet 0S200 ) are ignored.

The rest of the paper will explore the effects of considering these off-diagonal elements on the a-coefficients predicted

from forward calculations and the systematic changes in inverted profiles from 22 years of MDI and HMI measurements.

3. INVERSION

3.1. Selection of coupled multiplets

We carry out inversions for differential rotation using a-coefficients obtained from 72-day data-sets over the period

between 1996-05-01 and 2018-01-06 (all dates in this study use the yyyy-mm-dd format). We do away with the isolated

multiplet approximation for modes with ` ≥ 160 in the n = 0, 1 radial branches. The L2-norm error decreases rapidly

with decreasing ` (Kashyap et al. 2021). High-precision observations from HMI possess uncertainties as small as 0.03%

of the observed a-coefficients. Hence, a safe cutoff for the L2-norm error is taken to be 10−4 from Fig. 9 of Kashyap
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et al. (2021), and all modes with larger errors are considered for the full-coupling problem. Henceforth, we refer to

these as “coupled” multiplets, while the others are “isolated” multiplets. The inversions are “hybrid” in nature since

frequency splittings are modeled in two ways:

(A) For isolated multiplets, the main diagonal of the submatrix corresponding to the central multiplet k0 is used, i.e.,

δnω`m = diag
(
Z

(n0,`0)
k0,k0

)
/(2 n0

ω`0). We drop the superscript label (n0, `0) on the supermatrix from now on. It is

implied that any supermatrix corresponds to a central multiplet n0
S`0 .

(B) For coupled multiplets, the eigenvalue problem is solved for the entire supermatrix Z and frequency splittings

corresponding to the central multiplet n0
S`0 are read off. This one-to-one mapping between eigenfrequencies and

the corresponding modes is possible since the perturbed eigenfunctions are very close to the unperturbed analogs

— arising from the diagonally dominant nature of the supermatrix. We use float32 for all computation, since

any difference with higher precision is significantly lower than observational noise.

In hybrid inversions, based on our defined cutoff, we see that the typical number of observed multiplets is ∼ 1800, and

∼ 200 of those are found to be coupled, i.e., roughly 10% of all the observed modes are treated as coupled, and these

are responsible for corrections to the DPT-rotation profiles. To understand the depth up to which coupled multiplets

can result in such corrections, we first estimate the lower turning points of coupled modes. Invoking the Cowling

approximation, it may be shown that the lower turning point rLTP of modes (n > 0) may be expressed as

c2(rLTP)

r2
LTP

=
ω2

` (`+ 1)
, (8)

where c(r) is the sound speed at radial distance r from the center of the Sun and ω the mode frequency. The lowest

angular degree for the two radial branches n = 0, 1 where mode-coupling is considered is ` = 160. The above equation

is valid for n > 0 radial orders. So, using Eqn. (8) to estimate the rLTP for 1S160 , we get rn=1
LTP = 0.971R�. Since

eigenfunctions corresponding to the n = 0 branch, has no nodes in radius, it peaks close to the surface and dies off in

an evanescent manner. At r = 0.971R�, the 0S160 mode eigenfunctions are approximately two orders of magnitude

weaker than the maxima near the surface. Going deeper to r = 0.9R�, we see that these eigenfunctions are six orders

of magnitude smaller than the near-surface maximum. It is therefore expected that differential rotation below 0.9R�
is weakly sensitive to the effect of coupled modes. In our inversions, we fit for differential rotation in the spherical

shell bounded by r ∈ [0.9R�, 1.0R�].

3.2. Inversion methodology

We parameterize ws(r) on a radial grid on a basis comprising cubic B-splines βp(r), where index p refers to the knot

location corresponding to a specific B-spline polynomial with coefficient cps , i.e.,

ws(r) =





∑
p c

p, fixed
s βp(r) for r < 0.9

∑
p c

p
s βp(r) for r ≥ 0.9

, (9)

where cp, fixed
s cooresponds to the spline coefficients of the profiles of 2D RLS inversions. We use the same radial grid as

the 2D RLS inversions hosted on Stanford University’s Joint Science Operations Center (JSOC) database 1. Therefore,

the inverse problem of finding Ω(r, θ, φ) reduces to inferring the coefficients cps . Using Eqns. (4) and (9), we express

the supermatrix more explicitly in terms of the spline coefficients as

Zk′k =
∑

p

∑

s=1,3,5

cps Λsp,k′k +
(
ω2
k − ω2

ref

)
δk′k, (10)

where,

Λsp,k′k = 2ωref κ`′ κ` γs

(
`′ s `
1 0 −1

)(
`′ s `
m 0 −m

) ∫ R�

r=0

ρ0(r)βp(r)T
k′k
s (r) r dr. (11)

1 Radial grid on JSOC.

http://jsoc.stanford.edu/SUM95/D892366801/S00000/rmesh.orig
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The separation of terms that do not depend on cps into Λsp,k′k is essential. This allows for a one-time precomputation of

Λsp,k′k, saving both time and computational expense during the non-linear inversion when considering coupled modes.

Since we only fit for differential rotation for r ≥ 0.9, we classify the spline coefficients cps into a fixed component, denoted

by cp, fixed
s , corresponding to the basis functions with local support in r < 0.9 and the inverted component, denoted

by cp, fit
s , corresponding to the basis functions with local support in r ≥ 0.9. The cp, fixed

s is computed using profiles

available on JSOC. Accordingly, Λsp,k′k would also split up into Λs, fixed
p,k′k and Λs, fit

p,k′k. The supermatrix in Eqn. (10) may

then be expressed in terms of a fixed part Zfixed
k′k and the cp, fit

s dependent part,

Zk′k = Zfixed
k′k +

∑

p

∑

s=1,3,5

cp, fit
s Λs, fit

p,k′k, (12)

where Zfixed
k′k =

∑
p

∑
s=1,3,5 c

p, fixed
s Λs, fixed

p,k′k +
(
ω2
k − ω2

ref

)
δk′k and is precomputed along with Λs, fit

p,k′k. Finally, the

modeled data dmod is expressed as

dmod =




A [diag(Z)] /(2ωk0) for isolated modes,

A [eig(Z)] /(2ωk0) for coupled modes,
(13)

where diag(Z) returns elements on the main diagonal of the supermatrix Z corresponding to the self-coupling of the

central multiplet n0
S`0 − n0

S`0 , and eig(Z) returns eigenvalues corresponding to the central multiplet n0
S`0 after

solving the eigenvalue problem for the supermatrix Z. The operator A indicates the selection of modes belonging to

the central multiplet n0S`0 .

For the inversion, we define a regularized misfit function χ2 in an L2-norm sense

χ2 =

χ2
d=data misfit︷ ︸︸ ︷

∑

i∈ all modes

(
di − dimod

σid

)2

+
∑

s=1,3,5,7,9

µs

χ2
m=model smoothness︷ ︸︸ ︷[

d2ws(r)

dr2

]2

, (14)

where di and σid are the a-coefficients and their corresponding uncertainties, measured from HMI or MDI, and µs are

angular-degree-dependent regularization parameters. The second term dictates the smoothness of the inverted profile.

When using splines, it may be shown that this term can be recast in terms of the spline coefficients cps and an operator

D which captures the second derivative of the basis functions βp(r) with respect to r:

[
d2ws(r)

dr2

]2

=
∑

i,j∈all knots

cisD
ij cjs. (15)

We further use a non-dimensional regularization parameter µs, which is related to µs as below

µs = µsN
tr(Hd)

tr(Hm)
, (16)

where N is the total number of data a-coefficients di, Hd the Hessian associated with the data misfit χ2
d, and Hm the

Hessian associated with the model misfit χ2
m. These Hessians are computed as second derivatives of the respective χ2

with respect to the vector of the fitted spline coefficients cp, fit
s . The inverse problem is non-linear due to the eigenvalue

operation as shown in Eqn. (13) and the model parameters cp, fit
s undergo an iterative march towards the final solution

via the standard Newton’s method to minimize the misfit, χ2 (Tarantola 1987). The marching in parameter-space

requires the computation of gradient and hessian. These quantities are computed numerically using the autograd

functionality of jax (Bradbury et al. 2018). Further discussions on the accuracy and robustness on the eigenvalue

operator and inversion tools can be found in Appendix C.

The non-dimensional regularization parameter µs used for the inversions presented in this paper is chosen by the

traditional L-curve method. For this, we chose 50 logarithmically-spaced values of µs in a sufficiently large window of

[10−6, 106] for each s. For each of these values of µs, we perform the inversion and calculate the data misfit χ2
d and

model misfit χ2
m from the inverted model parameters. Subsequently, we made the L-curve by plotting χ2

d vs. χ2
m and

interpolated the curve with smooth cubic splines using interp1d function of Python’s scipy module. The µs for the

final inversion results presented in this paper was chosen from the knee of this L-curve. A representative plot for the

L-curve and a demonstration of the convergence for our hybrid inversions is provided in Appendix D.
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Figure 2. Left panel: Consecutive differences of a-coefficients when considering increasing smax for non-zero ws. To illustrate
further, in (B), the red block on the lower left shows the quantity log10 {[a2(smax = 3)− a2(smax = 1)]/σ(a2)}. These consecutive
differences for the odd and even a-coefficients are shown in the top and bottom rows, respectively. All blocks in the area to
the right of the yellow line demarcate statistically insignificant consecutive differences. Right panel: Same as the left panel,
but for an increasing number of neighbouring multiplets ∆`max instead of increasing maximum-angular-degree smax. Forward
calculations were done for the multiplet 0S280 using inverted rotation profiles available on JSOC, which uses HMI data measured
during the 72-day solar minima period between 2019-03-14 and 2019-05-25. Since this figure demonstrates the saturation of
a-coefficients and odd a-coefficients aj are significant only when j ≥ smax, we hatch the upper-triangle in (A).

3.3. Determining smax of ws(r) and supermatrix dimensionality

Coupling of modes is permissible within a certain frequency window ∆ω. Further, the Wigner 3 − j symbols in

Eqn. (4) impose the selection rule |`−`0| ≤ s, which disallows a central multiplet with angular degree `0 from coupling

with modes outside the window `′ ∈ [`0 − s, `0 + s]. This means that submatrices corresponding to coupling of

angular degrees (`0, `
′) would be non-zero. Consequently, with an increase in the maximum angular degree of rotation
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smax, farther and farther bands in the supermatrix Z are filled. The total number of submatrices that constitutes

a supermatrix, depends on the angular degree of the multiplet farthest from the central multiplet. We define this

maximum offset in angular degree between the central multiplet and its farthest neighbour as ∆`max = max(` − `0).

Although at first it might seem that smax = ∆`max, that is not true. ∆`max, infact, controls the frequency window

∆ω and in order for the eigenfrequencies to converge to a stable value, it is essential to choose a large enough ∆ω

and hence a large enough ∆`max. The supermatrix would therefore have non-zero bands upto the submatrices where

` ≤ `0 ± s and have zeros in all submatrices thereafter. Since each multiplet contains 2` + 1 modes, large values

of s or ∆`max correspond to large sizes of supermatrix Z. The non-linear inversion involves solving these eigenvalue

problems for all coupled multiplets at every iteration. Consequently, with increasing size of Z, the computational cost

of inversions grows significantly. In principle, choosing smax and ∆`max ensures all components of differential rotation

has been accounted for as well as coupling with all modes have been considered. Therefore, the “true” estimate of

the perturbed eigenstates require smax, ∆`max →∞. However, this is (A) not computationally tractable, and (B) not

practically necessary since the eigenfrequencies and eigenfunctions converge to a stable solution with increasing values

of both smax and ∆`max. This necessitates a judicious choice of truncation of the maximum angular degree smax of

ws(r) and the farthest neighbours in ` that need to be considered for the eigenvalue problem to converge sufficiently.

Since the maximum coupling is expected where (∂ω/∂`)n is the smallest along a radial branch n, we choose `0 = 281

on the f -branch (see Fig. 1 in Gizon & Birch 2005). Since we use modes upto ` = 300 on the radial branch with

∆`max = 19, 0S281 is the maximally-coupled central multiplet that could be analyzed.

We test the optimal smax for differential rotation via forward calculations using 2D-RLS profiles from JSOC dur-

ing the solar minimum corresponding to the 72-day period between 2019-03-14 and 2019-05-25. To do this, we

first vary smax from 1 to 19 holding ∆`max = 19 fixed. Although modes beyond `0 ± smax do not couple with

the central multiplet, this test allows us to check for convergence in the a-coefficients as a function of smax. The

result of this test is summarized in the left panel of Fig. 2. Each tile in the colour-map represents the quantity

log10 {[aj(smax = n+ 2)− aj(smax = n)]/σ(aj)}. This serves as a measure of the amount of change in the a-coefficients

when smax is increased by 2. The difference is scaled by the observed uncertainty of the a-coefficients to indicate whether

the changes are statistically significant. We have used a diverging colourbar with red patches indicating non-negligible

differences between successive smax cases, while blue patches indicate negligible differences. Fig. 2(A) shows that, for

odd a-coefficients, the consecutive differences are negligible for all smax. For completeness, we also present the consec-

utive differences of the even a-coefficients in Fig. 2(B). It may be safely inferred that from the case “11-9” onwards,

the consecutive differences are negligible. Therefore, considering ws(r) = 0 for s > 9 should give us a-coefficients that

are not statistically different from solving the problem with smax = 19.

Next, we vary ∆`max from 1 to 19 holding smax = 19 fixed. This serves as an independent test for how

many neighbouring multiplets we need to consider in order to ensure saturation of a-coefficients. The results are

summarized in the right panel of Fig. 2. Similar to the previous test, the coloured tiles represent the quantity

log10 {[aj(∆`max = n+ 2)− aj(∆`max = n)]/σ(aj)}. From Fig. 2(C) & (D), we see that all red patches occur for

∆`max ≤ 8.

4. RESULTS

4.1. Inverse problem: DPT vs. hybrid

As demonstrated in Section. 3.3, we may choose smax = 9 and ∆`max = 8 without incurring any statistically

significant errors due to truncation. The resultant supermatrix Zn0,`0 contains contributions from perturbations due

to w1(r) through w9(r) which couples neighbouring multiplets in the spectral window `0−9 < ` < `0 +9. As illustrated

in Eqn. (13), we model the data as the diagonal elements of Z for the isolated modes. For coupled modes, the data is

modeled via the full eigenvalue solver. As is customary, we have validated our inversion methodology with synthetic

data (with and without noise) in Appendix D. Having presented this verification of our hybrid inversion methodology

using artificially generated data for a known rotation profile, we proceed to perform hybrid inversions on real data.

We carry out the inversion using this “hybrid” modeling method and compare the results against a purely DPT

inversion, which is linear and considers all multiplets as isolated. The former represents an exact model and con-

sequently an “exact” inversion, while the latter is an approximation that has been traditionally used in inferring

differential-rotation profiles.

In Fig. 3, we show the consistency of our 1.5D DPT inversions as compared to the 2D RLS inversions available

on JSOC, both of which ignore cross-coupling of modes. The black line is a projection of the rotation profile Ω(r, θ)
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Figure 3. Comparison between differential-rotation profiles ws(r) up to angular degree s = 9 obtained from JSOC in black
and our DPT inversions in dashed red lines. The JSOC profiles are labelled “2D RLS” since they were obtained from projecting
the 2D inversions onto a 1.5D basis, as discussed in Appendix B. Since the modes that we use in hybrid inversions are almost
insensitive below rth = 0.9R�, we fix ws(r) to the JSOC values below this depth, as indicated by the vertical blue lines.

inferred via 2D RLS onto the 1.5D profile ws(r), as outlined in Appendix (B). The red line is from our 1.5D inversions.

We note that the two profiles are not expected to match exactly because of differences such as inversion methodologies,

model parameterization and exact choice of regularization parameters. Despite this, the two profiles agree well both

qualitatively and quantitatively. The plotted ws(r) profiles are from the 72-day MDI a-coefficient measurement starting

on 12th July, 1996.

Having established the validity of our DPT inversions against traditionally accepted results, we present the differences

between differential rotation profiles inferred from our hybrid and DPT inversions in Figs. 4 and 5. Fig. 4 shows the

difference at the solar surface as a function of latitude over 22 years, in chunks of 72-day periods, between May 1996

and January 2018. For this, we ignore temporal variations of differential rotation within each 72-day period. We

perform separate inversions of vrot (see Eqn. [3]) from a-coefficient measurements estimated from the corresponding

72-day time-series. Fig. 5 is the same, but plotted as a function of depth from the solar surface down to 0.9R� at

latitude λ = 15◦. We used MDI measurements up to April 2010 and HMI measurements thereafter. This is indicated

by the vertical dashed-white line in both figures. Comparing our Figs. 4 and 5 with Figs. 3(C) and 3(D) in Vorontsov

et al. (2002), respectively, we note that the correction in differential rotation due to mode coupling is approximately

three orders of magnitude smaller than the torsional-oscillation signal.

Despite this small difference, we note a systematic pattern as a function of time. In Fig. 4, for the MDI years, we

see bands of fast rotation around 20◦ latitudes and slow rotation around 40◦ latitudes. The poles show an alternating

pattern of 5 years of slow followed by fast rotation. Similar features can be discerned in the HMI years. However,

the bands of slower rotation, which were at 40◦ for MDI, are less pronounced and seem to have moved to around 60◦

for HMI. Moreover, the sub-polar branches of fast rotation in MDI that start around 1998 and merge with the polar

fast-rotation band around 2002 are missing for the HMI years (which were expected between 2011 and 2014). This

discrepancy could possibly be attributed to the change in instruments and the lower SNR for an`7 in HMI as compared

to MDI measurements. The depth profile in Fig. 5 broadly shows a layer of faster rotation around 0.98R� < r < 1.0R�
and a layer of slower rotation between 0.93R� < r < 0.97R�. Once again, there are differences between the MDI

and HMI years, which may be (at least in part) attributed to systematic differences in measurements. Although these
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demonstrate that there are systematic differences that may be spotted upon careful scrutiny, these are minuscule and

may be disregarded for practical purposes.

4.2. Effect on even a-coefficients

V11 developed an asymptotic description of mode coupling for high angular degrees and presented its effects on

even a-coefficients. In our study, solving the eigenvalue problem not only gives us the odd a-coefficients, but also

numerical estimates of even a-coefficients. Therefore, for the sake of completeness, we also tally our results, which

were computed using a numerical eigenvalue solver, with those of V11. To elaborate further on how we obtained our

estimates of an`2 and an`4 , the following steps may be considered: (A) using Eqn. (10), we construct the supermatrix

Zk′k using the differential rotation profile for the chosen period (solar minima or maxima as discussed below), (B)

since we are interested in considering mode-coupling, we carry out an eigenvalue problem to estimate the frequency

splittings δnω`m, and (C) using Eqn. (7), we estimate the even a-coefficients for j = 2, 4.

Figs. 1(a) & (b) in V11 compare contributions of mode coupling (using a semi-analytic treatment) and centrifugal

effects on even coefficients a2 and a4 for the f -mode. Reproducing the calculations of V11, the distortion of solar

surface due to centrifugal effects and the resulting change in gravitational potential are written as

R(θ) = R� [1 + ε2P2(cos θ) + ε4P4(cos θ)] (17)
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Ψ = −GM�
r

[
1−

(
R�
r

)3

J2P2(cos θ)−
(
R�
r

)5

J4P4(cos θ)

]
, (18)
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where ε2, ε4 are the oblateness coefficients, J2, J4 are gravitational moments and P2, P4 are Legendre polynomials.

V11 showed that, the even-ordered a−coefficients can be written as

δa2 =

[
5

2
ε2 + 3J2 −

10

3
(ε4 + J4)

](
∂ω

∂`

)

n

(19)

δa4 =
3

8
(7ε4 + 10J4)

(
∂ω

∂`

)

n

(20)

Using the measurements of J2, J4 from Roxburgh (2001), V11 showed that the corrections to the even-ordered

a−coefficients can be written as

δa2 = −1.20× 10−5

(
∂ω

∂`

)

n

, δa4 = −1.47× 10−6

(
∂ω

∂`

)

n

. (21)

From observed data, ∂ω/∂` can be computed to be nω`+1−nω`. These calculations are shown in Fig. 6. V11 used one

year of SOHO/MDI measurements over the solar minimum to diminish contributions from magnetism. We carry out

the same analysis using results from an eigenvalue solver, but using measurements from SDO/HMI during a 360-day

period over a solar minimum (2010-04-30 to 2011-04-25). From Fig. 6 we conclude that, in agreement with V11, mode

coupling and centrifugal effects together provide an adequate fit to the observed a2 coefficients. Mode coupling also

overwhelmingly dominates a4 measurements, providing a good fit to the data. However, for a2, V11 observed mode

coupling to dominate over centrifugal effects beyond ` = 200, whereas we find this to happen beyond ` ∼ 170. We

also plot the second-order effect of rotation as in Antia et al. (2000) in the dashed magenta line and the combined

contribution from mode-coupling and these second order effects in the solid magneta line. The second-order correction

in Antia et al. (2000) is a more complete treatment that the asymptotic calculation of centrifugal effects in V11. For

both an`2 and an`4 , just mode-coupling added with V11’s asymptotic centrifugal effects seems to explain the HMI data

at solar minima, accounting for a more rigorous second-order correction due to rotation clearly grazes the outer envelop

of the black dots. This suggests that there are other structure perturbations that need to be accounted for such as

sound-speed anomaly or a weak background solar minima magnetic field.

Fig. 7 is plotted in the same spirit as Fig. 6 but for the 360-day solar minima period between 2014-04-09 and 2015-

04-04. Neither an`2 nor an`4 are explain by the effects from rotation alone. Since solar maxima has significantly more

magnetic activity, this departure in the plotted even a-coefficients could be attributed to strengthened magnetic fields.

According to selection rules of a-coefficient kernels for Lorentz-stresses (see Das et al. 2020), these departures in even

a-coefficients may be using to infer the following magnetic quantities: B2
r , (B

2
θ +B2

φ), (B2
θ −B2

φ) and Br Bθ.

Measurements during solar maxima are expected to possess stronger signatures of magnetic fields as compared to

the solar minima. Therefore, we also provide an estimate of the even a-coefficients (scaled by the measured 360-day

uncertainties) using JSOC rotation profiles from the solar maximum between 2014-04-09 and 2015-04-09. We carried

out full eigenvalue solutions using smax = 19 for all the modes observed by HMI. Only the f -modes were found to

have predicted a2 and a4 which were larger than the uncertainties from a one-year period. The result for the modes

resolved by HMI for n = 0 is shown in Fig. 8. While all measured modes have a4/σ(a4) > 1, only ` > 160 modes

have a2/σ(a2) > 1. The SNR for a4 is about twice as large as a2. If the same calculation is repeated for 360-day

measurements instead of the currently used 72-day measurements, the SNR would be scaled up by
√

5.

5. DISCUSSION

Measurement of differential rotation is one of the triumphs of helioseismology. Traditional methods of inference have

used frequency splittings δωmn` for global modes of oscillations under the assumption that modes are self-coupled. While

this is acceptable for most modes in observed power spectra, this approximation worsens for high angular degrees in the

f and p1 branches. Kashyap et al. (2021) investigated the applicability of the isolated-multiplet approximation across

all the modes resolved by HMI up to ` = 300. They found deviations between δωm,QDPT
n` and δωm,DPT

n` beyond ` = 160

of the order of ≈ ±2σ(δωn`), where σ(δωn`) are the uncertainties in the measured frequency splittings. The frequency

splittings may be expressed in terms of odd and even a-coefficients, which constrain the equatorially symmetric part of

differential rotation and axisymmetric structure perturbations, respectively. This motivates the current study which

is aimed at: (i) investigating the changes in predicted odd and even a-coefficients via an eigenvalue treatment of the

operator Z, (ii) finding corrections to differential rotation when considering mode coupling as compared to isolated
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maxima.

multiplets, and (iii) comparing the expected second-order changes in the even a-coefficients computed from the exact

eigenvalue solver as compared to asymptotic analysis from previous studies, such as V11.

In this study, we adopt the QDPT approach to modeling the frequency splittings due to differential rotation. To

the best of our knowledge, all studies that use a-coefficients to infer differential rotation assume that multiplets are

isolated. We carry out forward modeling as well as an inverse problem by constructing the full supermatrix Z that

accounts for coupling, with all neighbouring multiplets adhering to selections rules imposed by Wigner 3− j symbols.

Section 8(c) in LR92 discusses the vanishingly small effect of QDPT for low angular-degree modes, quantified by the

coupling-strength coefficient. Using an asymptotic analytical treatment, V11 proposed the maximum correction in

frequency splittings as a function of ` and mentioned that the effect of mode coupling on oscillation frequencies might

be observable towards high `. Our study demonstrates that the mode-coupling-induced corrections in odd a-coefficients

introduce a relatively tiny change in differential rotation or torsional oscillations. We present this in Section 4.1 by

performing 1.5D inversions for 22 years of MDI and HMI data. The corrections show a systematic variation over

solar cycles, although the correction amplitudes are minuscule. This implies that accounting for mode coupling when

inferring differential rotation solely from odd a-coefficients is insignificant. In Section 4.2, we also compare the results

of our predicted even a-coefficients arising from mode coupling with those presented in the semi-analytic treatment

of V11 and find them to be consistent with only very minor differences. Therefore, we believe that future studies

accounting for even a-coefficients due to mode coupling can reliably use the corrections suggested by V11 instead of

the more computationally expensive method performed here.

Apart from the correction in torsional oscillation (which is weak but has a systematic variation over solar cycles),

we confirm that considering the contribution of differential rotation to even splitting coefficients due to mode coupling

is statistically significant. Fig. (8) shows that this effect in an`2 and an`4 is as large as 1.5σ and 2.5σ, respectively. The

effect of mode coupling on an`2 coefficients was accounted for in a comprehensive study by Chatterjee & Antia (2009) to

put limits on flow velocities in giant cells. However, most studies that use even a-coefficients to infer global magnetism

have not accounted for this correction. For instance, Antia et al. (2000) calculated estimates of magnetic field using

forward modelling, after considering distortion due to second-order corrections of rotation on even a-coefficients. They

predicted a magnetic field of strength 20 kG (or an equivalent acoustic perturbation) located 30 Mm below the solar

surface using even coefficients an`2 and an`4 . Baldner et al. (2009, 2010) too carried out inversions for magnetic field

strengths without accounting for mode coupling. Therefore, improving such prior estimates when the effect of QDPT

is considered remains an important area in which to make progress.
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APPENDIX

A. NOISY S = 7 HMI MEASUREMENTS

Inference of rotation as a function of depth depends critically on the signal-to-noise (SNR) of the measured a-

coefficients of modes sensitive to perturbations at that depth. High (low) angular-degree modes have shallow (deep)

lower turning points and are sensitive to shallow (deep) perturbations. Therefore, it is necessary to measure the SNR

of the coupled modes. In doing so, we found that some of the 72-day HMI measurements have poor SNR for an`7 . This

is reflected in the considerably wiggly w7(r) found from decomposing the 2D-RLS results on JSOC into 1.5D rotation

profiles. Fig. 9 shows normalized histograms for a-coefficients measured during phases of solar minima by MDI and

HMI in three ranges of angular degrees: (a) low ` modes in gray where 0 ≤ ` < 100, (b) intermediate ` modes in blue

where 100 ≤ ` < 200, and, (c) high ` modes in red where 200 ≤ ` < 300. For an`1 , an`3 , an`5 and an`9 , the SNR for the

shallow-sensitive modes is significantly larger than unity for both MDI and HMI. The SNR for only the HMI-measured

an`7 , however, is largely contained within ±1. Consequently, as seen in Fig. 10, the inferred ws(r) profiles from MDI

have the desired smoothness imposed by the regularization term. This is also true for w1(r), w3(r), w5(r) and w9(r)

profiles from HMI. However, the w7(r) profile from HMI is unusually wiggly.

B. CONVERTING 2D ROTATION PROFILES TO 1.5D

In the 1.5D inversions presented in Section (4.1), we fix ws(r) below rth = 0.9R� to the corresponding JSOC profiles

(which were obtained via 2D RLS). This requires converting Ω(r, θ) to its 1.5D equivalent ws(r). We follow the

prescription of Ritzwoller & Lavely (1991) which is outlined here for completeness and ease of reference of the reader.

The rotation profile Ω(r, θ) may be written in terms of Legendre polynomials Pk as

Ω(r, θ) =
∑

k=0,2,4...

Ωk(r)Pk(cos θ) (B1)

Further, we know that rotational velocity vrot(r, θ) = r̂× ẑΩ(r, θ). Using this and Eqn. (3), we have

vrot = r sin θ
∑

k=0,2,4...

Ωk(r)Pk(cos θ) = −
∑

s=1,3,5,...

ws(r) ∂θYs0 (B2)

Since our equations are written in terms of ws(r), we need to convert Ωk(r)→ ws(r). To do this, we may project vrot

onto the basis of Pk, i.e.,

rΩk(r) = − 2

2k + 1

∫
1

sin θ

( ∑

s=1,3,5,...

ws(r) ∂θYs0(θ)

)
Pk(cos θ) sin θ dθ , (B3)

which gives us the following matrix equation

rΩk(r) =
∑

s

αks ws(r) (B4)

Finally, ws(r) can be obtained by ws(r) = α−1 Ωk(r). To obtain upto w9(r), we use the following matrix inverse

α−1 = 2
√
π




1/
√

3 −1/5
√

3 0 0 0 0

0 1/5
√

7 −1/9
√

7 0 0 0

0 0 1/9
√

11 −1/13
√

11 0 0

0 0 0 1/13
√

15 −1/17
√

15 0

0 0 0 0 1/17
√

19 −1/21
√

19

0 0 0 0 0 1/21
√

23




(B5)
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Figure 9. Normalized histograms for signal-to-noise of odd a-coefficients a1− a9. The gray, blue and red colors indicate modes
with low, intermediate and high angular degree `. Histograms in the top panel were constructed from MDI data measured
during the 72-day period between 1996-07-12 and 1996-09-22. Histograms in the bottom panel were constructed from HMI data
measured during the 72-day period between 2010-04-30 and 2010-07-11. Both of these periods coincides with solar minima.
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Figure 10. 1.5D counterparts of the 2D-RLS rotation profiles obtain from JSOC during two different solar minima phases.
The profiles in the top panel correspond to MDI measurements between 1996-07-12 and 1996-09-22 and those in the bottom
panel correspond to HMI measurements between 2010-04-30 and 2010-07-11.
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Figure 11. Ratio of the L2-norm of E, the difference between the hybrid and DPT supermatrices, and the L2-norm of the
DPT supermatrix A. The blue, red and black dashed lines correspond to angular degrees ` = 200, 240, 280, respectively.

C. ACCURACY AND ROBUSTNESS OF THE NUMERICAL EIGENVALUE SOLVER

We use the linalg.eigh module in Python’s numpy package for computing eigenvalues. The lialg.eigh module is a

wrapper for its LAPACK implementation of evaluating eigenvalues of real symmetric or complex Hermitian matrices.

As mentioned in the documentation webpage of numpy.linalg.eigh, for a symmetric and real matrix (as is the

case for our supermatrix), the syevd routine is used for solving a real symmetric matrix using divide and conquer

algorithm. Under “Application Notes” in the syevd webpage, the developers mention that “The computed eigenvalues

and eigenvectors are exact for a matrix A+E such that ||E||2 = O(ε) ||A||2, where ε is the machine precision”. In our

case, A may be regarded as the DPT supermatrix and E would then be the difference between the hybrid and DPT

supermatrices. Note that the hybrid supermatrices are constructed from the final converged cp,fit
s arrays (see Eqn. [12])

obtained from our inversion algorithm — the coefficients we use to construct the final plots Figs. 4 & 5.

For our problem, we compute the DPT supermatrix (which ignores coupling across multiplets) and the hybrid

supermatrix (which accounts for coupling across multiplets). Since the coupling across multiplets induced due to

differential rotation is weak — as evidenced by the smallness of our corrections, it is reasonable to ask if the matrices

themselves are different enough for LAPACK’s syevd algorithm to yield distinctly different eigenvalues. We can frame

this question, in light of the Application Note provided by the LAPACK developers, as: “Is the ratio of L2-norm of

our E matrix (difference between hybrid and DPT supermatrix) and the L2-norm of our DPT matrix A significantly

larger than the machine precision?” We carry out our calculations in 64-bits precision, meaning O(ε) ≈ 10−16.

So, to investigate the above question, we have calculated ||E||2
/
||A||2 across multiple years for three large angular

degrees (` = 200, 240, 280) where hybrid fitting is applicable. The results are presented in Fig. 11. We see that the

ratio is consistently larger than O(10−6) which is atleast 1010 times larger than the order of machine precision O(ε).

Therefore, our DPT supermatrix A and the corresponding hybrid supermatrix A + E are different enough to yield

https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-fortran/top/lapack-routines/lapack-least-squares-and-eigenvalue-problem/lapack-least-squares-eigenvalue-problem-driver/symmetric-eigenvalue-problems-lapack-driver/syevd.html
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Figure 12. Validation of noise-free non-linear inversion. We construct synthetic dataset with a−coefficients generated using
Eqn. (13), shown by the solid black curve. We carry out non-linear inversions for the ws(r) profiles using these synthetically
generated a−coefficients. The inverted profiles are shown by the dashed red lines.

distinctly different eigenvalues. This shows that the eigenvalue routine used in Eqn. (14) is accurate enough to yield

eigenvalues which are not garbled by machine errors for the level of difference between DPT and hybrid supermatrices.

Eqn. (15) shows the cost function and the inversion involves fitting the model parameters cp,fit
s while trying to

minimize this cost function. Since our problem involves an eigenvalue operation, this is non-linear and so we adopt the

standard Newton’s method (Tarantola 1987). This involves starting from a guess solution (which is close enough to the

true solution than minimizes the cost function) and iteratively stepping towards the minima by computing a gradient

vector and Hessian tensor at each updated model parameter. These are commonplace in machine learning community

and Google’s jax package has emerged as an efficient tool for the same (Bradbury et al. 2018). In our study, we

have used the automatic differentiation routines jax.grad to compute gradients and the routines jax.jacfwd and

jax.jacrev to compute the Hessian. Note that jax uses 32-bits precision by default but we have used the additional

switch config.update(’jax enable x64’, True) to use 64-bit machine precision in our calculations.

D. VALIDATION OF INVERSION

This section demonstrates the validity of the non-linear hybrid inversions using synthetic, yet realistic rotation

profiles. To do so, we choose a reference profile vref
rot(r, θ) available through the JSOC pipeline corresponding to the

72-day MDI a-coefficient measurements starting on 12th July, 1996. We then use Eqns. (9), (12) & (13) to generate

a-coefficients using the hybrid method, i.e., isolated multiplet treatment for DPT modes and full QDPT treatment for

coupled modes. We first carry out an inversion using these noise-free synthetically generated a-coefficients. Fig. 12

compares the spherical harmonic components of the inverted profile vinv
rot with those of the synthetic profile vref

rot (see

Eqn. [3] for the spherical harmonic decomposition). The two profiles are seen to be exactly the same indicating the

validity of noise-free inversion methodology. Similarly, inversions using data corrupted with synthetic noise (at 0.1

σ, where σ represents the level of noise from observed a-coefficients) is shown in Fig. 13. In this case, the vinv
rot and

vref
rot are within the expected errors with neither large fluctuations nor overly smoothened profiles (both of which are

usually seen for improperly regularized inversions in the presence of noisy data). Hence, we deem the inversions to be

successfully benchmarked using realistic rotation profiles. We have performed this 2-pronged test (first clean and then

noisy inversion) over a variety of different profiles to validate the robustness of our inversion methodology.

The first five panels in Fig. 14 show representative L-curves for determining regularization parameters µs corre-

sponding to the different angular degrees s = {1, 3, 5, 7, 9}. The red marker indicates the chosen optimal value of

https://jax.readthedocs.io/en/latest/
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Figure 13. Validation of inversion with noise. As in Fig. 12, the solid black line indicates the synthetic ws(r) profiles to which
we add noise before carrying out a non-linear inversion to infer the dashed red line.
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Figure 14. The first five panels show L-curves for the different angular degrees s = {1, 3, 5, 7, 9}. These plots are representative
of L-curves corresponding to a typical 72-day MDI or HMI inversion. The red marker in each plot shows our chosen knee of
the curve and the corresponding value of µs is mentioned in the title of each subplot. The last panel in the lower-right, shows
a histogram (normalized to yield unit area) of χ2

d/N for all MDI inversions.
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Figure 15. Histograms showing the change in χ2 value between successive iterations across all 72-day MDI inversions. His-
tograms are color-coded according to their iteration number, as shown in the figure legend. Each histogram is normalized to
unit area.

µs located at the knee of the curve. This choice of regularization parameter represents an optimal balance between

the data misfit (the degree to which theoretical predictions from our inferred profile matches the observed data) and

the model smoothness (the degree of smoothness we impose in order to generate physically meaningful solutions and

avoid unrealistic oscillatory behaviour of inferred profiles). The lower-right panel in Fig. 14 shows a distribution of

the data misfit (scaled by the total number of data points N) where the histogram is normalized to yield unit area.

The distribution peaks around a scaled chi-square value of 1.4 which validates that our inversion is not over-fitting

while producing inferred profiles which generate predictions having high-fidelity to the observed a-coefficients. The

histogram is created using chi-square values from all MDI inversions.

Fig. 15 is presented to demonstrate the convergence of our iterative non-linear Newton inversion. Each histogram

shows the distribution of the change in total chi-square value between successive iterations. The histogram correspond-

ing to the first iteration shows that, on an average, the total misfit drops by O(103) in the first iteration. Thereafter,

the following iterations are seen to cluster around a much smaller change in misfit — around 8 orders of magnitude

smaller than the change in the first iteration. For the hybrid inversions, we start from the DPT profile which is obtained

from carrying out a linear inversion under the isolated multiplet approximation. Therefore, Fig. 15 shows that during

the iterative inversions the rotation profiles undergo an initial non-trivial change from the DPT profiles, followed by

negligible or insignificant changes in the following iterations. We run each of our inversions for five iterations to ensure

the above convergence in misfit is achieved for all the cases.


	1 Introduction
	2 Theoretical formulation: Isolated and coupled multiplets
	3 Inversion
	3.1 Selection of coupled multiplets
	3.2 Inversion methodology
	3.3 Determining smax of ws(r) and supermatrix dimensionality

	4 Results
	4.1 Inverse problem: DPT vs. hybrid
	4.2 Effect on even a-coefficients

	5 Discussion
	A Noisy s=7 HMI measurements
	B Converting 2D rotation profiles to 1.5D
	C Accuracy and robustness of the numerical eigenvalue solver
	D Validation of inversion

